- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Pato, Balint (4)
-
Tansuwannont, Theerapat (3)
-
Brown, Kenneth_R (2)
-
Brown, Kenneth R (1)
-
Brown, Kenneth R. (1)
-
Huang, Shilin (1)
-
Staples, J_Wilson (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pato, Balint; Tansuwannont, Theerapat; Brown, Kenneth_R (, Physical Review A)
-
Pato, Balint; Tansuwannont, Theerapat; Huang, Shilin; Brown, Kenneth R (, PRX Quantum)Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate - and -counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from to . Published by the American Physical Society2024more » « less
-
Tansuwannont, Theerapat; Pato, Balint; Brown, Kenneth R. (, Quantum)The Shor fault-tolerant error correction (FTEC) scheme uses transversal gates and ancilla qubits prepared in the cat state in syndrome extraction circuits to prevent propagation of errors caused by gate faults. For a stabilizer code of distance that can correct up to errors, the traditional Shor scheme handles ancilla preparation and measurement faults by performing syndrome measurements until the syndromes are repeated times in a row; in the worst-case scenario, rounds of measurements are required. In this work, we improve the Shor FTEC scheme using an adaptive syndrome measurement technique. The syndrome for error correction is determined based on information from the differences of syndromes obtained from consecutive rounds. Our protocols that satisfy the strong and the weak FTEC conditions require no more than rounds and rounds, respectively, and are applicable to any stabilizer code. Our simulations of FTEC protocols with the adaptive schemes on hexagonal color codes of small distances verify that our protocols preserve the code distance, can increase the pseudothreshold, and can decrease the average number of rounds compared to the traditional Shor scheme. We also find that for the code of distance , our FTEC protocols with the adaptive schemes require no more than rounds on average.more » « less
An official website of the United States government
